Tag: low embodied energy materials

13
Aug
2015

Allison Ewing shares her green design expertise at Hanley Wood’s Vision 2020 Symposium

Allison Ewing shares her expertise on green design at the Hanley Wood Vision 2020 Video Symposium. She discusses why the building is at a Darwinian crossroads and it’s time to evolve an Architecture of the Fittest. Architects must find solutions that are attractive to home developers who will build 75% of new housing in the coming decades. Nature, with 3.8 billion years of R&D has a lot to teach us about adaptive — and cost effective — strategies in a changing environment. Ms. Ewing discusses how bigger is not better, rather connecting people with the landscape is fulfilling, and how creative designers are finding clever solutions to living richly in a small setting. She tackles creating the zero energy home, the use of low-embodied energy materials and new technologies such as 3D printed buildings which will transform how we build. Some researchers are even exploring buildings which are self-assembling, patterning processes on nature.
https://twitter.com/Ewing_Allison, https://www.facebook.com/HaysEwingDesignStudio, https://www.linkedin.com/pub/allison-ewing/b/929/710

29
Jul
2014

shape in context

Bermann’s Rule (1847) – members of species are larger in colder parts of their range attributed to surface to volume ratio.

Bermann’s Rule (1847) – members of species are larger in colder parts of their range attributed to surface to volume ratio.

The natural world has many examples of adaptation to climate. The northern white-tailed deer has a lower surface area to volume ratio than does its more diminutive southern cousin and radiates less body heat per unit of mass, allowing it to stay warmer in the colder climate.  The southern white-tailed deer has a higher surface are to volume ratio facilitating heat loss through the skin, helping to cool the body.  The former is built to retain heat, the latter to cool.

vtvaThe advent of heating and cooling systems coupled with improvements in the building envelope and cheap energy have led to the homogenization of homebuilding. Compare the floor plan of a developer home in Vermont to one in Arizona. Apart from a little white cladding here and stucco there, the blueprints are the same. I grew up in a 1770’s home in Vermont that was four rooms over four (more volume to surface area). The traditional home in Virginia (where I now reside, apparently I can only live in states that start with “V”) is two over two (more surface area to volume). The former built to heat, the latter to breathe.  Vermont has 6006 heating degree days (measurement that reflects the demand for energy needed to heat a building), Virginia has half that number, 3304.   Vermont has 747 cooling degree days while VA has 1422 (twice as many).  Without air conditioning, modern heating, homes from the 18th century were adapted to conserve or reject heat — a strategy seen in nature and one which, when applied to the building industry, has low first costs. This is a strategy the Developer-Builder can easily adopt. It’s called Regionalism.